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Abstract

This paper _rst describes a _nite element method for the large de~ection analysis of axisymmetric shells
and plates on a nonlinear tensionless elastic foundation[ Through the use of discrete data points\ any form
of nonlinear elastic foundation behaviour can be easily modelled[ The analysis is then validated by com!
parison with existing results for circular plates and beams as the only existing results for shells on tensionless
foundations are found to be in error[ Following this veri_cation\ the analysis is applied to investigate the
behaviour of shallow spherical shells subject to a central concentrated load on tensionless linear elastic
foundations[ A number of insightful conclusions regarding the behaviour of such structure!foundation
systems are drawn[ The numerical results for shells are believed to be the _rst correct results\ which may be
useful in benchmarking results from other sources in the future[ Þ 0888 Elsevier Science Ltd[ All rights
reserved[

0[ Introduction

Shells and plates on elastic foundations are found in many practical applications[ A number of
di}erent foundation models have been proposed in the past\ with the simplest being the Winkler
"0756# model[ In a Winkler foundation model\ the foundation reactions are assumed to be a linear
function of the displacements of the supported structure[ Consequently\ the foundation is assumed
to react to both compression and tension in the same manner and to be always in contact with the
structure[ Structures on Winkler foundations have been extensively studied by many investigators
"Vlasov and Leontev\ 0855#\ particularly concerning their linear elastic behaviour[ Some work also
exists on shells on nonlinear foundations which react in the same manner to both tension and
compression "Luo and Teng\ 0887#[

The simple idealization of foundation behaviour in a Winkler model is not valid for many real
supporting media\ the commonest of which is the soil which is practically incapable of sustaining
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any tensile forces[ The Winkler hypothesis was motivated more by the desire for mathematical
simplicity than physical reality[ For structures on soils and other supporting media capable of
resisting compressive stresses only\ the tensionless foundation model should be used for accurate
modelling if the possibility exists for tensile stresses to develop at the interface between the structure
and the foundation[

Analysis of a structure on a tensionless elastic foundation is di.cult as separation can occur
between the structure and the foundation\ and in general\ the region of contact is not known a
priori[ Even for a linear elastic structure on a tensionless elastic foundation which reacts linearly
to compression "referred to as a linear tensionless elastic foundation or simply linear tensionless
foundation later#\ the analysis needs to be performed iteratively[ As a result\ only a small number
of studies on structures on linear tensionless elastic foundations have been published\ and even
less is known about structures on nonlinear tensionless foundations[

Tsai and Westmann "0856# considered a linear tensionless foundation and presented an iterative
scheme that gives the solution for a structure on a tensionless foundation from that for a structure
on a Winkler foundation[ Weitsman "0869# studied the static behaviour of a beam resting on a
tensionless elastic foundation subjected to a concentrated load and to a uniformly distributed load[
More recently\ beams on a tensionless foundation under a moving load was studied by Lin and
Adams "0877#[

Some of the early attempts to analyze plates supported by a linear tensionless elastic foundation
were made by Weitsman "0869#\ but the results were later found to be slightly in error[ Weitsman
"0861# gave some corrections to his earlier work "Weitsman\ 0869#[ Svec "0863# employed the _nite
element method to investigate the problem of plates of various shapes on tensionless foundations[
Gladwell "0865# considered a variety of plane\ frictionless\ unbonded contact problems and pro!
vided approximate solutions in terms of Chebyshev polynomials[ The problem of transversely
loaded circular plates resting on bimodulus and tensionless foundations was addressed by Kamiya
"0866# using an approximate approach[ The equilibrium con_guration of a free rectangular plate
supported on a tensionless elastic foundation was studied by Villaggio "0872# and Li and Dempsey
"0877#[ More recently\ Celep "0877a\ b# addressed the behaviour of circular and rectangular plates
on tensionless elastic foundations under eccentric loading[ A large deformation analysis of circular
plates on a tensionless elastic foundation has been performed by Khathlan "0883#[ A limited
amount of work also exists on elastic!plastic circular plates on tensionless foundations "Sokol!
Supel\ 0878# and rectangular plates on tensionless elastic!plastic foundations "Lewandowski and
Switka\ 0880#[

Surprisingly little published information has been found on the analysis and behaviour of shells
on tensionless foundations[ The only study found on shells is due to Ghosh and Paliwal "0882#
which describes a small de~ection analysis for a shallow spherical shell on a tensionless foundation
under a central concentrated load[ The accuracy of their results was not checked as there were no
previous results[ No study on the large de~ection behaviour of shells on tensionless foundations
has been found[

This paper will _rst describe a _nite element method for the large de~ection analysis of axi!
symmetric shells and plates on a nonlinear tensionless elastic foundation[ This work represents a
further development of the analysis described in Luo and Teng "0887# which deals with the non!
symmetric buckling analysis of shells of revolution on nonlinear elastic foundations which react
in the same manner to both tension and compression[ Through the use of discrete data points as
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was done in Luo and Teng "0887#\ any form of nonlinear elastic foundation behaviour can be
easily modelled[ The analysis will then be validated by comparison with existing results for circular
plates and beams as the only set of results for shells on tensionless foundations are found to be in
error[ Following this veri_cation\ the analysis will be applied to investigate the behaviour of shallow
spherical shells subject to a central concentrated load on tensionless linear elastic foundations[
A _nal example illustrates the capability of the analysis in dealing with nonlinear tensionless
foundations[

1[ Finite element analysis

1[0[ The doubly!curved axisymmetric shell element

The doubly!curved isoparametric axisymmetric shell element used in the _nite element for!
mulation is shown in Fig[ 0[ The element geometry is de_ned in cylindrical coordinates by the
radius R\ the axial coordinate Z and the element meridional curvature d8:ds at the nodal points[
The geometry is then interpolated between the nodes using cubic Hermitian functions[ The nodal
displacements are de_ned by ui\ "du:ds#i\ vi\ "dv:ds#i\ wi and "dw:ds#i in the global coordinate system
at each ring node at the end of the element[ The displacements within the element\ expressed in
the global coordinate system\ u\ v and w "Fig[ 0# are interpolated between the nodal points in terms
of the nodal values also using cubic Hermitian functions[ The global displacements u\ v and w at
any point are related to the local displacements u¹\ v¹ and w¹ in the curvilinear coordinates by a
transformation matrix ðT Ł "Teng and Rotter\ 0878a#[

1[1[ Nonlinear _nite element equations

The total Lagrangian approach is adopted in which all the quantities are referred to the
undeformed con_guration[ The application of the principle of virtual displacements leads to a set
of nonlinear equations for the _nite element model of a given structure which may be represented
by]

"F"d## � "F#¦"Fs#− s
N

i�0 gðBŁT"S# dV � 9 "0#

in which "d# is the vector of nodal displacement variables\ "F# is the vector of equivalent nodal
forces due to body forces and surface tractions\ "Fs# is the vector of equivalent nodal forces due
to the foundation reactions\ N is the number of elements employed\ ðBŁ is the incremental strain!
displacement matrix based on the nonlinear shell theory of Rotter and Jumikis "0877# for shells of
revolution which is a special case of the general nonlinear shell theory described in Teng and Hong
"0886#\ "S# is the vector of stress resultants and "F"d## represents a vector of nodal residual
forces[ For each iteration\ the nodal displacement increments for the structure "Dd# are obtained
by solving the linearised system of equations

"F"d## � ðKTŁ"Dd# "1#
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Fig[ 0[ Geometry and displacements of an element] "a# local and global displacements^ "b# geometry of an element^ "c#
displacements within an element^ "d# nodal displacements[

where ðKTŁ is termed the global tangent sti}ness matrix[ The tangent sti}ness matrix for each
element is given by

ðKTŁe � ðKŁe¦ðKsŁe¦ðKsŁe "2#

where ðKŁe is the sti}ness matrix including the e}ect of changes in geometry\ ðKsŁe accounts for the
e}ect of internal stresses and ðKsŁe is the element tangent sti}ness matrix of the elastic foundation[
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The element tangent sti}ness matrices are condensed to reduce the inter!element continuity as
described by Teng and Rotter "0878a#[ The global tangent sti}ness matrix ðKTŁ may then be found
by assembling the condensed element tangent sti}ness matrices[

1[2[ A nonlinear tensionless elastic foundation model

The nonlinear tensionless foundation model to be described here is of the Winkler type and may
be viewed as nonlinear springs "Figs 0 and 1#[ Although Fig[ 0 shows only distributed springs
normal to the shell surface\ distributed springs over the whole or part of the shell surface in the
three directions of the local coordinate system are all considered[ The reaction!displacement curve
of the tensionless foundation is represented by a number of discrete data points as shown in Fig[
1[ These discrete points may be obtained from tests\ or from a theoretical study[ For simplicity of
description here\ negative displacements in the local coordinates are assumed to cause compression
in the foundation\ but the opposite case can also be handled easily in the formulation[ The
foundation reaction pressures are assumed to be positive when acting in the negative directions of
local coordinates[

Let r be the reaction pressure of the foundation "in either of the three directions#\ and d¹ be the
corresponding displacement at any point of the shell surface\ then\ if d¹ i − 9\ ri � 9 "Fig[ 1#[ If the
displacement is negative\ a linear interpolation is used to _nd the foundation reaction for a given
value of the displacement between two discrete data points[ At any stage of the loading when the
displacement is d¹k which is between d¹ i−0 and d¹ i\ the corresponding spring reaction pressure is
evaluated as

rk � ri−0¦s"d¹ i−d¹ i−0# "3#

where the tangent sti}ness of the spring is given by

Fig[ 1[ Foundation reaction pressure!displacement relationship[
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s �
dr
dd¹

�
ri−ri−0

d¹ i−d¹ i−0

"4#

The secant sti}ness of the spring resistance is evaluated as

sb �
rk

d¹k

"5#

The vector of spring reaction pressure is related to the vector of displacements through

"r# � 8
rf

ru

rn
9� &

sbf 9 9

9 sbu 9

9 9 sbn
'8

u¹

v¹

w¹ 9
� ðKsbŁ"d¹# � ðKsbŁðT Ł"d# � ðKsbŁðT Ł ðNŁ"de# "6#

where sbf\ sbu and sbn are the secant sti}ness of the springs in the meridional\ circumferential and
normal directions\ respectively\ "d# is the vector of displacements at any point on the shell reference
surface in the global coordinate system\ "de# is the element nodal displacement vector in global
coordinates\ ðNŁ is a matrix of shape functions and ðT Ł a matrix transforming quantities in global
coordinates to local coordinates "Teng and Rotter\ 0878a#[ The incremental relation between the
vector of spring reaction pressures and the vector of displacements is given by

d"r# � 8
drf

dru

drn
9� &

sf 9 9

9 su 9

9 9 sn
'8

du¹

dv¹

dw¹ 9
� ðKsŁ d"d¹# � ðKsŁ ðT Ł d"d# � ðKsŁ ðT Ł ðNŁ d"de# "7#

in which sf\ su and sn are the tangent sti}ness of the springs in the meridional\ circumferential and
normal directions\ respectively[ The vector of element nodal equivalent forces "Fs#e due to the
spring reaction pressures is given by

"Fs#e � −gA

ðNŁT ðT ŁT"r# dA "8#

Consequently\ the element tangent sti}ness matrix of the springs in the global coordinates is given
by

ðKsŁe � −
d"Fs#e

d"de#
� gA

ðNŁT ðT ŁT
d"r#
d"de#

dA

� gA

ðNŁT ðT ŁT ðKsŁ ðT Ł ðNŁ dA "09#

2[ Finite element implementation and results

The tensionless elastic foundation model proposed here has been coded into the NEPAS program
"Teng and Rotter\ 0878a\ 0878b^ Teng and Luo\ 0886^ Luo and Teng\ 0887# for the nonlinear
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and buckling analysis of shells of revolution[ Some numerical examples are presented below to
demonstrate the validity and capability of the tensionless foundation model as well as the _nite
element formulation[ In addition\ the behaviour of shallow spherical shells will be investigated in
detail using the _nite element program[

Apart from the one example at the end of the paper\ all results described in the paper relate to
a linear tensionless elastic foundation represented as a special case of the nonlinear tensionless
foundation model of Fig[ 1 and reacting only to displacements normal to the shell surface[ As the
boundary between a contact zone and a separation zone generally lies between the two end nodes
of an element\ its position is found by a simple linear interpolation of the normal displacements[
While the use of the element shape function leads to more accurate results\ this simpler approach
leads to results of su.ciently high accuracy[ It should also be noted that the vertical de~ection w
is taken to be positive when it is upward[

3[ Numerical veri_cation

3[0[ Beams on tensionless foundations

Figure 2a shows a long beam of uniform section size subjected to a self weight q per unit length
and a concentrated downward load P on a tensionless elastic foundation studied by Weitsman
"0869#[ The behaviour of the beam was described by Weitsman using dimensionless lengths of the
contact zone and separation zone j9 and j0 and the dimensionless load Q�[ These dimensionless
quantities are de_ned as

j9 � bX9\ j0 � bX0\ Q� � b
P
q

"00#

where X9 is the half length of the contact zone under the load P and X0 is the distance between the
load and the point where the beam comes into contact with the foundation again after separation
"Fig[ 2a#[ The parameter b is de_ned by b3 � k:"3EI# where k is the foundation sti}ness and EI is
the bending rigidity of the beam[ The relationships between the dimensionless lengths j9 and
"j0−j9# against the dimensionless load Q� are plotted in Fig[ 2b and c\ which show that the present
results are in close agreement with those of Weitsman "0869#[

3[1[ Circular plates on a tensionless elastic foundation

The behaviour of circular plates on tensionless foundations has recently been studied by
Khathlan "0883# using both the small de~ection theory and the large de~ection theory[ As shown
in Fig[ 3\ the plate has a radius R\ a thickness t\ and a ~exural rigidity D[ The Young|s modulus
of the plate material is E\ and the Poisson|s ratio n � 9[2[ The circular plate is subject to a
downward central load P[ The results are plotted in a dimensionless manner using the dimensionless
foundation sti}ness K� � kR3:D\ in which k is the foundation sti}ness\ and the dimensionless load
P� � P:"ktR1#\ in which P is the central downward load and the bending rigidity
D � Et2:ð01"0−n1#Ł[

Figure 4 shows comparisons between Khathlan|s "0883# and the present results for various
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Fig[ 2[ Beam on tensionless foundation] "a# schematic of deformed shape^ "b# e}ect of load level on contact zone^ "c#
e}ect of load level on separation zone[
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Fig[ 3[ Circular plate on tensionless foundation[

parameters of interest[ These comparisons show a very close match between the two sets of results\
con_rming the accuracy of the present analysis[ typical radial variations of the displacements are
plotted in Fig[ 4a\ which shows the uplighting phenomenon of the plate[ A signi_cant di}erence is
found between the predictions from the small de~ection theory and those of the large de~ection
theory[ The use of a large de~ection theory leads to a sti}er structure!foundation system "Fig[ 4a#[
The radius of contact Rc "i[e[ the radius of the outer edge of the central contact zone# increases
with the applied load based on the large de~ection analysis\ but is independent of the load level
according to the small de~ection analysis "Fig[ 4b#[ For an accurate analysis of such plates with
relatively large de~ections "around w:t × 9[4 at the plate centre#\ the use of a large de~ection
analysis is essential[ The variations of displacements with loads at the plate centre and at the plate
edge predicted by large de~ection analyses are shown in Fig[ 4c and d\ respectively[

3[2[ A shallow spherical shell on a tensionless foundation

In many practical applications\ thin shells are in contact with soils or other solids[ As a result\
many studies have been carried out on the analysis and behaviour of shells on elastic foundations[
However\ little information currently exists on the behaviour of shells on tensionless elastic
foundations[ Ghosh and Paliwal "0882# appear to have presented the _rst and only study on the
behaviour of a shallow spherical shell resting on a tensionless foundation subject to a central
concentrated load using the small de~ection theory[ The accuracy of their results was not veri_ed
due to the lack of previous results[ It is therefore important to obtain more information for shells
on tensionless foundations both for a better understanding of their structural behaviour\ and to
provide an independent check of the results of Ghosh and Paliwal "0882#[

Figure 5 shows the geometry of a shallow spherical shell of the inverted dome type "referred to
as an inverted spherical cap later# de_ned by the radius R\ the shell depth H and the shell thickness
t[ The radius of curvature of the shell R9 is related to R and H\ so only two of these three parameters
need to be speci_ed[ The spherical shell considered by Ghosh and Paliwal "0882# "Fig[ 5# has the
following material and geometric properties] E � 1[0×0909 kg m−1\ n � 9[2\ R9 � 09 m\ R � 1 m\
t � 7 mm[ The foundation sti}ness k � 0[5×093 kg m−2[ Three cases of edge conditions were
considered] clamped edge "C#\ simply supported edge "S# and free edge "F#[ This shell was also
investigated by the present analysis[ Figure 6 shows a comparison between the load de~ection
curves from Ghosh and Paliwal and those from the present analysis[ It is clear that these two sets
of results do not match[ These di}erences have been carefully considered with the conclusion that
the results of Ghosh and Paliwal "0882# are in error as the present analysis produces results in
agreement with others for beams and circular plates as shown above[
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Fig[ 4[ Response of a circular plate under a point load on tensionless foundation] "a# radial variations of displacement
from small and large de~ection analysis^ "b# relation between radius of contact and applied load^ "c# plate central
displacement against load from large de~ection analysis^ "d# plate edge displacement against load from large de~ection
analysis[
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Fig[ 4 "continued#[
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Fig[ 5[ Shallow spherical shell on tensionless foundation[

Fig[ 6[ Comparison for Ghosh and Paliwal|s shallow spherical shell[

4[ Inverted spherical caps on tensionless foundations

4[0[ General

As the existing results of Ghosh and Paliwal "0882# are in error\ a numerical parametric study
was carried out in this study for inverted spherical caps without edge support on tensionless linear
elastic foundations which react only to displacements normal to the shell surface[ Apart from other
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Fig[ 7[ E}ect of Poisson|s ratio for inverted spherical caps[

applications\ inverted spherical caps are often used as shallow shell foundations for tower!shaped
structures[

The results are presented in a dimensionless manner so that they are independent of the elastic
modulus E and are only slightly dependent on the Poisson|s ratio n[ The results presented here are
for a Poisson|s ratio of 9[1\ but the use of a Poisson|s ratio of another value leads to only slightly
di}erent results "Fig[ 7#[ The dimensionless load is given by P� � PR1:"Dt#\ where P is the applied
load\ and D is the usual bending rigidity\ and the dimensionless foundation sti}ness parameter is
given by K� � kR3:D where k is the foundation sti}ness[ It may be noted that the dimensionless
foundation sti}ness de_ned here reduces to that used by Khathlan "0883# for circular plates[

4[1[ Effect of radius!to!thickness ratio on load de~ection curves

Figure 8 shows load de~ection responses for inverted spherical caps with di}erent values of the
radius!to!thickness ratio R:t[ The shells all have a depth of H:t � 09 and rest on a tensionless
foundation with a foundation sti}ness K� � 093[ It is clear that the dimensionless load de~ection
responses are independent of the R:t ratio unless R:t becomes so small "R:t � 49# that the shell is
no longer shallow[ The e}ect of the R:t ratio thus needs no further examination as far as shallow
shells are concerned[ The load de~ection curve from a corresponding linear analysis shows that
the e}ect of large de~ections is strengthening and becomes important when the central vertical
displacement exceeds around half the plate thickness[
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Fig[ 8[ E}ect of radius!to!thickness ratio for inverted spherical caps[

4[2[ Zones of contact and separation

Vertical de~ections under di}erent load levels of a spherical shell with H:t � 09 and K� � 093

are shown in Fig[ 09[ Only results from the large de~ection analysis are given[ Although separation
occurs around the middle between the centre and the edge of the shell\ the upward de~ections are
very small compared with the downward de~ections[ The vast majority of the load applied on the
shell is taken by the supporting medium under the central contact zone[ Figure 00 shows the
variation of the radial widths of the central contact zone "Rc:R# and the separation zone
ð"Rs−Rc#:RŁ with the applied load[ It is seen that as the load increases\ the central zone of contact
expands and the separation zone shrinks until separation completely disappears at a dimensionless
load of around 249[

It should be noted that results from the small de~ection analysis indicate that the zones of
contact and separation do not depend on load levels "Fig[ 00#\ as was noticed for circular plates[
Therefore\ a single chart "Fig[ 01# can be developed from numerical results for the contact radius
of the central contact zone for shells of di}erent depths H:t[ As long as de~ections are below half
the shell thickness\ this chart can be used to determine the contact area of the shell with the
supporting medium easily[ It should be noted that for H:t � 4\ 09 and 19\ there is a sudden jump
in the variation of the contact radius Rc:R with the dimensionless foundation sti}ness K�[ For
example\ when H:t � 4\ the contact radius Rc:R changes from around Rc:R � 9[43 to 0 "full
contact# for a value of K� around 2499[ The _nite element results plotted in Fig[ 01 are only for
cases where separation does occur[ This chart provides useful information in a compact form for
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Fig[ 09[ Vertical de~ections of an inverted spherical cap on tensionless foundation[

designers of shallow shells on a tensionless foundation supporting a concentrated load[ Noting
that the vertical reaction pressures are simply the vertical displacements in the central contact zone
times the sti}ness of the supporting medium\ and the fact that the displacements vary almost
linearly from the centre to the edge of the central contact zone\ this chart may be used to estimate
the soil pressures on a shallow shell foundation[

The above results on contact and separation zones for inverted spherical caps were obtained
using a Poisson|s ratio of 9[1 and R:t value of 199\ but the results as presented in the dimensionless
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Fig[ 00[ E}ect of load level on contact and separation zones of inverted spherical caps[

Fig[ 01[ Central contact radii from a small de~ection analysis for inverted spherical caps[
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Table 0
E}ect of Poisson|s ratio on contact radius of inverted spherical caps

Rc:R R:t � 49 R:t � 099 R:t � 199 R:t � 499 R:t � 649 R:t � 0999

n � 9[0 9[2715 9[2745 9[2751 9[2752 9[2752 9[2752
n � 9[1 9[2703 9[2733 9[2749 9[2740 9[2740 9[2741
n � 9[2 9[2681 9[2714 9[2720 9[2722 9[2722 9[2722
n � 9[3 9[2659 9[2687 9[2793 9[2795 9[2795 9[2795

Table 1
E}ect of Poisson|s ratio on separation radius of inverted spherical caps

Rc:R R:t � 49 R:t � 099 R:t � 199 R:t � 499 R:t � 649 R:t � 0999

n � 9[0 9[4513 9[4434 9[4413 9[4407 9[4406 9[4406
n � 9[1 9[4589 9[4500 9[4480 9[4474 9[4473 9[4473
n � 9[2 9[4794 9[4615 9[4696 9[4699 9[4699 9[4588
n � 9[3 9[4871 9[4892 9[4772 9[4766 9[4765 9[4765

manner have been taken to be valid for other values of R:t and Poisson|s ratio as these two
parameters have previously been shown to have little in~uence on the dimensionless results[ Tables
0 and 1 con_rm that similar to the situation for load!de~ections curves\ the e}ects of di}erent R:t
ratios and di}erent values for the Poisson|s ratio on the dimensionless contact and separation radii
are small[

5[ Spherical caps on tensionless foundations

5[0[ General

Having examined the behaviour of inverted spherical caps\ it was decided to consider the
opposite case\ dome type shallow spherical shells "referred to simply as spherical caps#\ to achieve
a desirable degree of completeness of our knowledge on the interaction between shallow spherical
shells and tensionless foundations[ The geometry of spherical caps is de_ned by the same parameters
as those used for inverted caps[ The results are also presented in the same dimensionless manner
for a Poisson|s ratio of 9[1[ Again\ the use of a Poisson|s ratio of another value leads to only
slightly di}erent results "Fig[ 02#[

5[1[ Effect of radius!to!thickness ratio on load de~ection curves

Figure 03 shows load de~ection responses for spherical caps of di}erent radius!to!thickness
"R:t# ratios[ These dimensionless plots con_rm that they are independent of the R:t ratio[ The
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Fig[ 02[ E}ect of Poisson|s ratio for spherical caps[

Fig[ 03[ E}ect of radius!to!thickness ratio for spherical caps[
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results here are found to be even less sensitive to R:t than those for inverted caps\ as the deviation
of the load!de~ection curve for R:t � 49 from other cases is less than that for inverted caps[ The
e}ect of large de~ections is initially weakening as the concentrated load leads to local high
compression\ but becomes strengthening when the de~ections are large enough to deform the
central part of the shell into an inverted cap[

5[2[ Zones of contact and separation

The dimensionless results discussed here on contact and separation zones were again obtained
assuming a Poisson|s ratio of 9[1 and an R:t ratio of 199[ The results are taken to be valid for
other values of these two parameters as they have been shown to have little in~uence on these
dimensionless results[

Vertical de~ections under di}erent load levels of a spherical shell with H:t � 09 and K� � 093

are shown in Fig[ 04[ Only results from the large de~ection analysis are given[ Again separation
initially occurs around the middle between the centre and the edge of the shell and the upward
de~ections are very small compared with the downward de~ections[ The behaviour of contact and
separation zones under increasing loads of these caps is signi_cantly di}erent from that of inverted
caps[ For these caps\ the central contact radius changes slightly at low loading and then shows
little variation with load\ so full contact can never be achieved "Fig[ 05#[ On the other hand\ the
zone of separation grows with loading until the whole shell outside the central contact area loses
contact with the foundation "Fig[ 04#[

The small de~ection theory again predicts no changes in the contact and separation zone sizes
as the load increases[ A chart of the central contact radii based on the small de~ection theory was
developed\ but it was found to be almost indistinguishable from the chart shown in Fig[ 01 for
inverted caps[ Therefore\ Fig[ 01 can be used for both types of caps to determine the central contact
zones at small de~ections[

6[ Nonlinear tensionless foundation

All the above results are for structures on linear tensionless foundations[ To demonstrate the
capability of the present analysis in dealing with nonlinear tensionless foundations\ and to produce
numerical results which may be useful for benchmarking purposes in the future\ an inverted
spherical cap "Fig[ 5# with a Poisson|s ratio of 9[1 and an R:t ratio of 199 on a nonlinear tensionless
foundation was analyzed[ The variation of the foundation reaction pressure normal to the shell
surface with the normal displacement of the cap is given by

r � r9"0−e−lw:t# "01#

r9 is the limit pressure of the foundation\ and l is the dimensionless initial tangent sti}ness of the
nonlinear foundation ði[e[ l � 1"r:r9#:1"w:t# at w:t � 9Ł[ Such kind of foundation has been used
by other researchers in modelling nonlinear soil behaviour "Calladine\ 0885#[ The shell was
analysed for two di}erent foundations] "a# a nonlinear tensionless foundation with l � 4 and
r9:E � 0[794×09−6 where E is the elastic modulus of the shell and "b# a linear tensionless foun!
dation with a sti}ness equal to the initial tangent sti}ness of the nonlinear foundation[ The shape



T[ Hon` et al[ : International Journal of Solids and Structures 25 "0888# 4166Ð42994185

Fig[ 04[ Vertical de~ections of a spherical cap on tensionless foundation[
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Fig[ 05[ E}ect of load level on contact and separation zones of spherical caps[

Fig[ 06[ Linear and nonlinear reaction pressure!displacement relationship[

of the reaction!normal displacement curve for the nonlinear foundation is shown in Fig[ 06 together
with that of the corresponding linear tensionless foundation[ In the _nite element analysis\ the
nonlinear foundation reaction!displacement curve was represented by a large number of discrete
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Fig[ 07[ Load!de~ection curves of inverted spherical caps[

data points so that the curve could be very accurately modelled[ Figure 07 shows the two load
de~ection responses[ The e}ect of foundation nonlinearity is clearly demonstrated by comparing
these two load de~ection curves[

7[ Conclusions

A _nite element method for the large de~ection analysis of axisymmetric shells and plates on a
nonlinear tensionless elastic foundation has been presented\ veri_ed and then applied to investigate
the behaviour of shallow spherical shells of both the dome type "i[e[ spherical caps# and the inverted
dome type "i[e[ inverted spherical caps# subject to a central concentrated load on tensionless linear
elastic foundations[ An example of a shallow spherical shell on a nonlinear tensionless foundation
has also been discussed[ The following are the main conclusions]

"a# If the small de~ection theory is used\ then the contact area between a shallow spherical shell
or a circular plate under a central concentrated load supported on a tensionless foundation is
independent of load levels[ A contact radius chart for shallow spherical shells under a central
concentrated load has been developed[ The chart provides useful information to designers of
shallow shells on tensionless foundations[

"b# If the e}ect of geometric nonlinearity is included\ the contact area changes with load levels[
This e}ect for inverted spherical caps di}ers from that for spherical caps[ For inverted spherical
caps\ the central contact area expands with loading\ and full contact can be eventually achieved[
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For spherical caps\ the central contact area is relatively stable but the separation zone expands
as the load increases[ Consequently\ shallow spherical shells of the inverted dome type is more
appropriate as shell foundations since the contact area expands as load increases[

"c# The only existing results for the small de~ection behaviour of shallow spherical shells on
tensionless foundations have been found to be in error[ The new results presented here are
believed to be the _rst correct results for small and large de~ection behaviour of shells on
tensionless foundations[ These results should be useful in benchmarking results form other
sources in the future[
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